四虎在线精品,免费国产小视频在线观看,国产在线一区观看,一级毛片试看60分钟免费播放

課程目錄:為電信服務供應商的智能大數(shù)據(jù)信息業(yè)務培訓
4401 人關注
(78637/99817)
課程大綱:

         為電信服務供應商的智能大數(shù)據(jù)信息業(yè)務培訓

 

 

 

Breakdown of topics on daily basis: (Each session is 2 hours)

Day-1: Session -1: Business Overview of Why Big Data Business Intelligence in Telco.
Case Studies from T-Mobile, Verizon etc.
Big Data adaptation rate in North American Telco & and how they are aligning their future business model and operation around Big Data BI
Broad Scale Application Area
Network and Service management
Customer Churn Management
Data Integration & Dashboard visualization
Fraud management
Business Rule generation
Customer profiling
Localized Ad pushing
Day-1: Session-2 : Introduction of Big Data-1
Main characteristics of Big Data-volume, variety, velocity and veracity. MPP architecture for volume.
Data Warehouses – static schema, slowly evolving dataset
MPP Databases like Greenplum, Exadata, Teradata, Netezza, Vertica etc.
Hadoop Based Solutions – no conditions on structure of dataset.
Typical pattern : HDFS, MapReduce (crunch), retrieve from HDFS
Batch- suited for analytical/non-interactive
Volume : CEP streaming data
Typical choices – CEP products (e.g. Infostreams, Apama, MarkLogic etc)
Less production ready – Storm/S4
NoSQL Databases – (columnar and key-value): Best suited as analytical adjunct to data warehouse/database
Day-1 : Session -3 : Introduction to Big Data-2
NoSQL solutions

KV Store - Keyspace, Flare, SchemaFree, RAMCloud, Oracle NoSQL Database (OnDB)
KV Store - Dynamo, Voldemort, Dynomite, SubRecord, Mo8onDb, DovetailDB
KV Store (Hierarchical) - GT.m, Cache
KV Store (Ordered) - TokyoTyrant, Lightcloud, NMDB, Luxio, MemcacheDB, Actord
KV Cache - Memcached, Repcached, Coherence, Infinispan, EXtremeScale, JBossCache, Velocity, Terracoqua
Tuple Store - Gigaspaces, Coord, Apache River
Object Database - ZopeDB, DB40, Shoal
Document Store - CouchDB, Cloudant, Couchbase, MongoDB, Jackrabbit, XML-Databases, ThruDB, CloudKit, Prsevere, Riak-Basho, Scalaris
Wide Columnar Store - BigTable, HBase, Apache Cassandra, Hypertable, KAI, OpenNeptune, Qbase, KDI
Varieties of Data: Introduction to Data Cleaning issue in Big Data
RDBMS – static structure/schema, doesn’t promote agile, exploratory environment.
NoSQL – semi structured, enough structure to store data without exact schema before storing data
Data cleaning issues
Day-1 : Session-4 : Big Data Introduction-3 : Hadoop
When to select Hadoop?
STRUCTURED - Enterprise data warehouses/databases can store massive data (at a cost) but impose structure (not good for active exploration)
SEMI STRUCTURED data – tough to do with traditional solutions (DW/DB)
Warehousing data = HUGE effort and static even after implementation
For variety & volume of data, crunched on commodity hardware – HADOOP
Commodity H/W needed to create a Hadoop Cluster
Introduction to Map Reduce /HDFS
MapReduce – distribute computing over multiple servers
HDFS – make data available locally for the computing process (with redundancy)
Data – can be unstructured/schema-less (unlike RDBMS)
Developer responsibility to make sense of data
Programming MapReduce = working with Java (pros/cons), manually loading data into HDFS
Day-2: Session-1.1: Spark : In Memory distributed database
What is “In memory” processing?
Spark SQL
Spark SDK
Spark API
RDD
Spark Lib
Hanna
How to migrate an existing Hadoop system to Spark
Day-2 Session -1.2: Storm -Real time processing in Big Data
Streams
Sprouts
Bolts
Topologies
Day-2: Session-2: Big Data Management System
Moving parts, compute nodes start/fail :ZooKeeper - For configuration/coordination/naming services
Complex pipeline/workflow: Oozie – manage workflow, dependencies, daisy chain
Deploy, configure, cluster management, upgrade etc (sys admin) :Ambari
In Cloud : Whirr
Evolving Big Data platform tools for tracking
ETL layer application issues
Day-2: Session-3: Predictive analytics in Business Intelligence -1: Fundamental Techniques & Machine learning based BI :
Introduction to Machine learning
Learning classification techniques
Bayesian Prediction-preparing training file
Markov random field
Supervised and unsupervised learning
Feature extraction
Support Vector Machine
Neural Network
Reinforcement learning
Big Data large variable problem -Random forest (RF)
Representation learning
Deep learning
Big Data Automation problem – Multi-model ensemble RF
Automation through Soft10-M
LDA and topic modeling
Agile learning
Agent based learning- Example from Telco operation
Distributed learning –Example from Telco operation
Introduction to Open source Tools for predictive analytics : R, Rapidminer, Mahut
More scalable Analytic-Apache Hama, Spark and CMU Graph lab
Day-2: Session-4 Predictive analytics eco-system-2: Common predictive analytic problems in Telecom
Insight analytic
Visualization analytic
Structured predictive analytic
Unstructured predictive analytic
Customer profiling
Recommendation Engine
Pattern detection
Rule/Scenario discovery –failure, fraud, optimization
Root cause discovery
Sentiment analysis
CRM analytic
Network analytic
Text Analytics
Technology assisted review
Fraud analytic
Real Time Analytic
Day-3 : Sesion-1 : Network Operation analytic- root cause analysis of network failures, service interruption from meta data, IPDR and CRM:
CPU Usage
Memory Usage
QoS Queue Usage
Device Temperature
Interface Error
IoS versions
Routing Events
Latency variations
Syslog analytics
Packet Loss
Load simulation
Topology inference
Performance Threshold
Device Traps
IPDR ( IP detailed record) collection and processing
Use of IPDR data for Subscriber Bandwidth consumption, Network interface utilization, modem status and diagnostic
HFC information
Day-3: Session-2: Tools for Network service failure analysis:
Network Summary Dashboard: monitor overall network deployments and track your organization's key performance indicators
Peak Period Analysis Dashboard: understand the application and subscriber trends driving peak utilization, with location-specific granularity
Routing Efficiency Dashboard: control network costs and build business cases for capital projects with a complete understanding of interconnect and transit relationships
Real-Time Entertainment Dashboard: access metrics that matter, including video views, duration, and video quality of experience (QoE)
IPv6 Transition Dashboard: investigate the ongoing adoption of IPv6 on your network and gain insight into the applications and devices driving trends
Case-Study-1: The Alcatel-Lucent Big Network Analytics (BNA) Data Miner
Multi-dimensional mobile intelligence (m.IQ6)
Day-3 : Session 3: Big Data BI for Marketing/Sales –Understanding sales/marketing from Sales data: ( All of them will be shown with a live predictive analytic demo )
To identify highest velocity clients
To identify clients for a given products
To identify right set of products for a client ( Recommendation Engine)
Market segmentation technique
Cross-Sale and upsale technique
Client segmentation technique
Sales revenue forecasting technique
Day-3: Session 4: BI needed for Telco CFO office:
Overview of Business Analytics works needed in a CFO office
Risk analysis on new investment
Revenue, profit forecasting
New client acquisition forecasting
Loss forecasting
Fraud analytic on finances ( details next session )
Day-4 : Session-1: Fraud prevention BI from Big Data in Telco-Fraud analytic:
Bandwidth leakage / Bandwidth fraud
Vendor fraud/over charging for projects
Customer refund/claims frauds
Travel reimbursement frauds
Day-4 : Session-2: From Churning Prediction to Churn Prevention:
3 Types of Churn : Active/Deliberate , Rotational/Incidental, Passive Involuntary
3 classification of churned customers: Total, Hidden, Partial
Understanding CRM variables for churn
Customer behavior data collection
Customer perception data collection
Customer demographics data collection
Cleaning CRM Data
Unstructured CRM data ( customer call, tickets, emails) and their conversion to structured data for Churn analysis
Social Media CRM-new way to extract customer satisfaction index
Case Study-1 : T-Mobile USA: Churn Reduction by 50%
Day-4 : Session-3: How to use predictive analysis for root cause analysis of customer dis-satisfaction :
Case Study -1 : Linking dissatisfaction to issues – Accounting, Engineering failures like service interruption, poor bandwidth service
Case Study-2: Big Data QA dashboard to track customer satisfaction index from various parameters such as call escalations, criticality of issues, pending service interruption events etc.
Day-4: Session-4: Big Data Dashboard for quick accessibility of diverse data and display :
Integration of existing application platform with Big Data Dashboard
Big Data management
Case Study of Big Data Dashboard: Tableau and Pentaho
Use Big Data app to push location based Advertisement
Tracking system and management
Day-5 : Session-1: How to justify Big Data BI implementation within an organization:
Defining ROI for Big Data implementation
Case studies for saving Analyst Time for collection and preparation of Data –increase in productivity gain
Case studies of revenue gain from customer churn
Revenue gain from location based and other targeted Ad
An integrated spreadsheet approach to calculate approx. expense vs. Revenue gain/savings from Big Data implementation.
Day-5 : Session-2: Step by Step procedure to replace legacy data system to Big Data System:
Understanding practical Big Data Migration Roadmap
What are the important information needed before architecting a Big Data implementation
What are the different ways of calculating volume, velocity, variety and veracity of data
How to estimate data growth
Case studies in 2 Telco
Day-5: Session 3 & 4: Review of Big Data Vendors and review of their products. Q/A session:
AccentureAlcatel-Lucent
Amazon –A9
APTEAN (Formerly CDC Software)
Cisco Systems
Cloudera
Dell
EMC
GoodData Corporation
Guavus
Hitachi Data Systems
Hortonworks
Huawei
HP
IBM
Informatica
Intel
Jaspersoft
Microsoft
MongoDB (Formerly 10Gen)
MU Sigma
Netapp
Opera Solutions
Oracle
Pentaho
Platfora
Qliktech
Quantum
Rackspace
Revolution Analytics
Salesforce
SAP
SAS Institute
Sisense
Software AG/Terracotta
Soft10 Automation
Splunk
Sqrrl
Supermicro
Tableau Software
Teradata
Think Big Analytics
Tidemark Systems
VMware (Part of EMC)

四虎在线精品,免费国产小视频在线观看,国产在线一区观看,一级毛片试看60分钟免费播放
<strike id="jrjdx"><ins id="jrjdx"></ins></strike>

<address id="jrjdx"></address>

    <listing id="jrjdx"><listing id="jrjdx"><meter id="jrjdx"></meter></listing></listing>
    <address id="jrjdx"></address><form id="jrjdx"><th id="jrjdx"><th id="jrjdx"></th></th></form>
    <address id="jrjdx"><address id="jrjdx"><listing id="jrjdx"></listing></address></address>
    <noframes id="jrjdx">

    <noframes id="jrjdx">
    <form id="jrjdx"></form><form id="jrjdx"></form>

      <noframes id="jrjdx"><address id="jrjdx"><listing id="jrjdx"></listing></address>
      <noframes id="jrjdx">

      亚洲一区二区高清视频| 动漫精品视频| 久久久7777| 国产日本一区二区三区| 欧洲精品在线一区| 高清国产一区| 成人永久免费| 国产一区免费在线| 国产精品国模大尺度私拍| 91九色在线观看| 国产精品免费一区二区三区四区| 99中文视频在线| 一区二区三区免费看| 视频一区国产精品| caoporn国产精品免费公开| 一区视频二区视频| 国产精品三区www17con| 超碰97人人人人人蜜桃| 久久www免费人成精品| 亚洲精品久久久久久一区二区| 九九九热999| 欧美黑人xxxxx| 成人h视频在线观看| 91传媒视频在线观看| 欧美美乳视频网站在线观看| 久久久一本精品99久久精品66| 91超碰在线免费观看| 成人免费在线看片| 极品尤物一区二区三区| 欧美一区二视频在线免费观看| 91九色偷拍| 国产传媒欧美日韩| av电影成人| 欧美极品jizzhd欧美| 久久99精品久久久久久久久久| 亚洲7777| 91精品入口蜜桃| 亚洲视频精品一区| 亚洲国产婷婷香蕉久久久久久99| 国产精品久久久久久久久婷婷| 91在线精品观看| 日本一区二区三区四区在线观看| 国产二区不卡| 欧美韩国日本精品一区二区三区| 97视频热人人精品| 一本一道久久a久久精品综合| 亚洲国产一区二区三区在线| 亚洲资源在线网| av观看久久| 日本高清一区| 91青青草免费在线看| 裸体丰满少妇做受久久99精品| 91久久极品少妇xxxxⅹ软件| 日韩欧美在线观看强乱免费| 久久久久九九九| 国产精品日本一区二区| 区一区二区三区中文字幕| 中文字幕免费在线不卡| 免费久久99精品国产自| 精品视频高清无人区区二区三区| 欧美精品一区二区三区在线四季| 精品国产第一页| 精品国产免费久久久久久尖叫| 亚洲日本理论电影| 国产富婆一区二区三区| 久久久久久久久久码影片| 亚洲高清不卡一区| 久久久www免费人成黑人精品| 亚洲7777| 久久久久国产精品视频| 欧美日本亚洲| 亚洲精品中文字幕乱码三区不卡| 国产精品jizz视频| 一区二区三区三区在线| 一区二区免费在线视频| 日韩欧美精品在线不卡| 日韩亚洲不卡在线| caoporn国产精品免费公开| 在线观看日韩片| 91沈先生播放一区二区| 亚洲色图自拍| 日本在线观看一区二区| 亚洲 国产 欧美一区| 亚洲午夜精品久久久中文影院av| 欧美日韩一区二区三区在线视频| 久热国产精品视频一区二区三区| 日本一区视频在线观看| 中文字幕一区二区三区乱码| 亚洲欧洲一区二区福利| 在线国产99| 国产亚洲欧美一区二区三区| 麻豆一区区三区四区产品精品蜜桃| 97超级在线观看免费高清完整版电视剧| 中文字幕色一区二区| 亚洲国产日韩美| 欧美日韩一区在线播放| 99re视频在线播放| 日韩欧美亚洲在线| 免费精品视频一区二区三区| 懂色一区二区三区av片| 国产一区免费视频| 久久成人资源| 久草热久草热线频97精品| 国产91亚洲精品一区二区三区| 5g影院天天爽成人免费下载| 久久久www免费人成黑人精品| 欧美日韩在线不卡一区| 亚洲一区二区三区午夜| 久久久久久亚洲精品不卡4k岛国| 国产精品一区二区三区四区五区| 精品国产二区在线| 亚洲开发第一视频在线播放| 日韩成人在线资源| 亚洲欧美日本国产有色| 免费成人看片网址| 视频一区亚洲| 久久精品国产精品青草色艺| 国产欧美韩日| 尤物一区二区三区| 99一区二区| 一区二区三区不卡在线| 九九九久久久| 999精品在线观看| 在线视频欧美一区| 免费电影一区| 国产呦系列欧美呦日韩呦| 久久99精品久久久久久青青日本| 神马影院一区二区三区| 国产精品青青草| 2020国产精品久久精品不卡| 一区二区三区四区视频在线观看| 欧美一区二区高清在线观看| 日本视频一区二区不卡| aa日韩免费精品视频一| 亚洲国产欧美一区二区三区不卡| 国产一区二区免费在线观看| 91精品国产综合久久久久久丝袜| 欧美1o一11sex性hdhd| 99国产超薄肉色丝袜交足的后果| 久久精精品视频| 欧美污视频久久久| 欧美日韩成人一区二区三区| 久久国产精品99久久久久久丝袜| 加勒比在线一区二区三区观看| 不卡视频一区二区三区| 国产精品二区三区四区| 极品尤物一区二区三区| 久久人人97超碰人人澡爱香蕉| 欧美成人第一区| 精品国产乱码久久久久久郑州公司| 午夜精品一区二区三区在线观看| 欧美一区二区三区精美影视| 欧美中日韩一区二区三区| 国产精品乱码视频| 91高跟黑色丝袜呻吟在线观看| 久久久久久久久四区三区| 日韩高清av| 91九色蝌蚪嫩草| 六十路精品视频| 小说区图片区图片区另类灬| 久久另类ts人妖一区二区| 精品国产91亚洲一区二区三区www| 国产精品二区三区| 91aaaa| 成人3d动漫一区二区三区91| 国产视频一区二区不卡| 国产精品一区二区三区免费| 蜜桃日韩视频| 91亚洲精品丁香在线观看| 国产精品伊人日日| 99精品国产高清一区二区| 成人在线免费网站| 国产成人精品一区二区三区福利| 欧美亚州在线观看| 999视频在线观看| 亚洲国产欧美不卡在线观看| 宅男在线精品国产免费观看| 欧美精品与人动性物交免费看| 91视频免费在线观看| 国产精品一国产精品最新章节| 五月天久久狠狠| 91嫩草在线| 亚洲国产一区二区精品视频| 日韩少妇中文字幕| 亚洲成色最大综合在线| 亚洲精品乱码视频| 国产亚洲欧美一区二区三区| 狠狠色噜噜狠狠狠狠色吗综合| 国产欧美一区二区三区另类精品| 精品国产乱码一区二区三区四区| 欧美极品色图| 视频一区二区三区免费观看| 日韩欧美在线一区二区| 国产伦精品一区二区三区在线| 成人看片视频| 精品视频免费观看| 久久av一区二区三区亚洲| 亚洲午夜在线观看| 玛丽玛丽电影原版免费观看1977| 欧美精品一区二区三区四区五区| 椎名由奈jux491在线播放| 亚洲黄色成人久久久| 91精品久久香蕉国产线看观看| 天天综合色天天综合色hd| 7777奇米亚洲综合久久| 中文字幕精品一区日韩| 一本色道久久综合亚洲二区三区| 国产女人水真多18毛片18精品| 久久精品综合一区| 久久精品国产综合精品| 日本不卡一区二区三区在线观看| 国产精品免费视频一区二区| 日韩一本精品| 成人午夜电影在线播放| 欧美精品一区二区三区在线看午夜| 97人摸人人澡人人人超一碰| 天堂资源在线亚洲视频| 国产伦精品一区二区三区四区免费| 国产伦精品一区二区三区四区视频| 色就是色欧美| 韩国成人一区| 国产精品免费视频一区二区| 成人久久18免费网站漫画| 成人av免费电影| 1区1区3区4区产品乱码芒果精品| 奇米视频888战线精品播放| 欧美中文娱乐网| 久久青青草综合| 视频在线精品一区| 蜜桃传媒视频麻豆一区| 欧美日韩免费高清| 亚洲日本无吗高清不卡| 杨幂一区欧美专区| 欧美三级电影在线播放| 日韩精品成人一区二区在线观看| 天堂资源在线亚洲视频| 天堂资源在线亚洲资源| 国产精品.com| 一本色道久久99精品综合| 欧美精品123| 国产精品香蕉视屏| 精品欧美一区二区三区久久久| 久久国产主播精品| 91九色视频在线观看| 欧美视频小说| 亚洲女人毛片| 日韩福利影院| 91手机在线播放| 国产日韩精品一区观看| 亚洲欧美影院| 国产精品久久久久久久久久直播| 日本一区二区在线| 欧美精品一区二区三区四区五区| 色综合久久久久久久久五月| 超碰国产精品久久国产精品99| 国产精品视频福利| 欧美色图亚洲自拍| 日产中文字幕在线精品一区| 一区二区在线中文字幕电影视频| 91在线播放视频| 国产视频一区二区不卡| 日本一区二区精品视频| 国产一区二区在线观看免费播放| 日韩欧美一区二区三区四区五区| 日韩精品一区二区三区丰满| 国产精品sss| 日韩国产一区久久| 欧美在线3区| 99精品国产一区二区| 亚洲日本精品| 美媛馆国产精品一区二区| 久久久久久久久久久久久久久久av| 147欧美人体大胆444| 一区二区精品在线观看| 日韩精品电影网站| 成人在线视频网址| 亚洲欧美综合一区| 在线看成人av电影| 欧洲一区二区日韩在线视频观看免费| 激情小说综合网| 在线观看欧美激情| 国产日韩久久| 超碰97人人人人人蜜桃| 亚洲欧洲三级| 国精产品99永久一区一区| 91|九色|视频| 99伊人久久| 国产美女99p| 一区视频二区视频| 麻豆av一区二区三区| 国产伦精品一区二区三| 精品中文字幕人| 国产女主播一区二区三区| 久久av一区二区三区漫画| 色婷婷精品国产一区二区三区| 日韩久久久久久久久久久久久| 亚洲国产精品久久久久久女王| 久久av一区二区三区亚洲| 一区二区三区观看| 亚洲一区二区精品在线| 视频一区视频二区视频三区视频四区国产| 精品欧美国产一区二区三区不卡| 日本在线观看一区二区三区| 亚洲不卡中文字幕| 色播亚洲视频在线观看| 欧美色图亚洲自拍| 日本高清久久一区二区三区| 一区二区三区久久网| 欧美日韩国产精品一区二区| 国产一区自拍视频| 日韩欧美99| 国产高清在线精品一区二区三区| 国产chinese精品一区二区| 丝袜美腿玉足3d专区一区| 小说区图片区图片区另类灬| 欧美日韩一区二区视频在线观看| 99久久久久国产精品免费| 亚洲国产一区二区精品视频| av一区和二区| 国产精品对白刺激久久久| 欧美日韩大片一区二区三区| 国产精品传媒毛片三区| 国产一区二区不卡视频在线观看| 欧美精品国产精品久久久| 黑人中文字幕一区二区三区| 欧美理论一区二区| 欧美午夜精品久久久久久蜜| 日韩精品电影网站| 国产91亚洲精品一区二区三区| 国产精品二区二区三区| 国产一区二区三区高清视频| 国产日韩欧美二区| 正在播放国产精品| 日韩欧美在线一区二区| 精品一区二区三区视频日产| 日韩视频精品| 一区二区三区不卡在线| 色综合电影网| 亚洲激情一区二区三区| 亚洲一区二区不卡视频| 在线综合视频网站| 日韩精品伦理第一区| 亚洲日本理论电影| 一区二区视频国产| 蜜桃精品久久久久久久免费影院| 成人区精品一区二区| 亚洲精品中字| 综合久久国产| 蜜桃臀一区二区三区| 国产精品免费一区二区| 亚洲精品永久www嫩草| 天天综合狠狠精品| 天天综合色天天综合色hd| 91久久精品www人人做人人爽| 国产一区免费在线| aaa级精品久久久国产片| 国产精品一区视频| 日韩视频在线播放| 在线视频91| 欧美一区二区视频17c| 91视频免费在线观看| 欧美另类一区| 99国产超薄丝袜足j在线观看| 日本一区网站| 日韩三级电影免费观看| 国产99视频精品免费视频36| 99久久无色码| 欧美另类一区| 美脚丝袜一区二区三区在线观看| 一区二区三区我不卡| 欧美日韩精品中文字幕一区二区| 国产精品国色综合久久| 激情视频在线观看一区二区三区| 性欧美大战久久久久久久免费观看| 国产精品久久久久久久免费大片| 视频一区二区精品| 精品一区二区国产| 看高清中日韩色视频| av在线不卡观看| 国产91亚洲精品一区二区三区| 丝袜足脚交91精品| 亚洲精品成人自拍| 午夜老司机精品| 国内精品视频在线播放| 日韩片电影在线免费观看| 综合视频免费看| 成人av免费在线看| 一区二区三区四区欧美日韩| 先锋在线资源一区二区三区| 免费在线一区二区| 青青草国产精品| 电影午夜精品一区二区三区| 欧美日韩中文国产一区发布| 国产成人成网站在线播放青青| 麻豆一区区三区四区产品精品蜜桃| 欧美亚洲免费高清在线观看| 91麻豆蜜桃| 91久久久一线二线三线品牌| 亚洲精品影院| 97人人做人人人难人人做|